Energy Expenditure and Fuel Homeostasis During and After Bouts of FES Cycling with Different Devices

UNIVERSITY OF MIAMI *IILLER SCHOOL* of MEDICINE

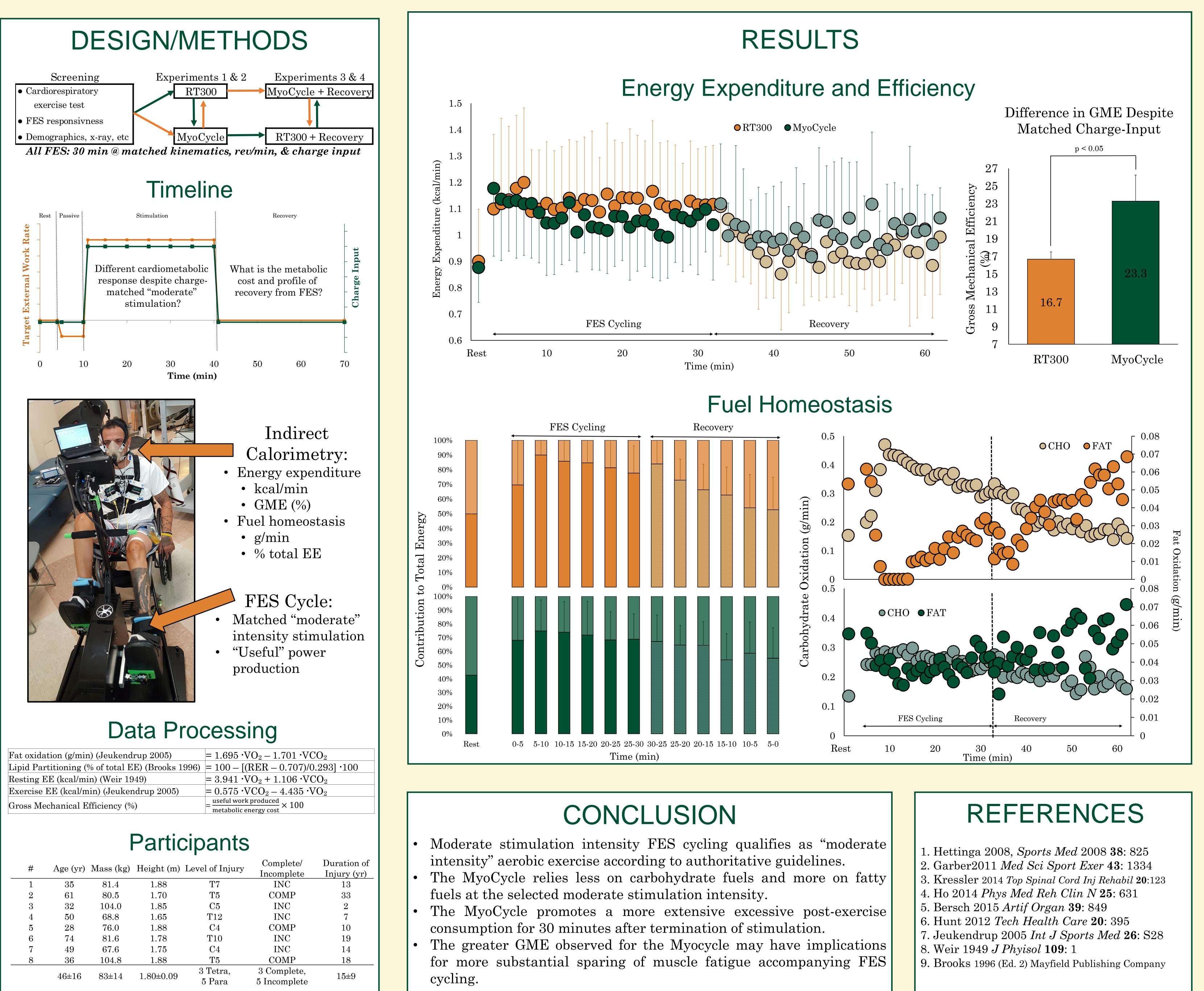
ABSTRACT

Objective: When matched for charge input, determine if caloric (kcal) expenditure and fuel partitioning measured during and immediately following a bout of functional electronic stimulation (FES) cycling differed when performed on two FES devices.

Design/Method: Four males with spinal cord injury (SCI; age: 43±15 yr; weight: 77±6 kg; level of injury: C4-T11) completed 30 min of steady-state FES exercise on four separate occasions using a charge-matched moderate stimulation intensity. Two sessions were completed on a commercially available unit (RT300, Restorative Therapies, MD) and two on a device that is in pre-production testing (MyoCycle, MYOLYN, FL) that employs a different electrical control paradigm. Before, during, and after cycling, energy expenditure and fuel homeostasis were calculated via pulmonary gas exchange (Oxycon, Jeager, CA), and central hemodynamics (for the MyoCycle device only) via impedance cardiography (PhysioFlow, Manatec Biomedical, FR).

Results: Rates of oxygen consumption (VO2) and cardiac output (Q) during FES were $36\pm18\%$ and $58.7\pm25.4\%$ of their respective VO2peak and Qpeak achieved during maximal effort arm cycling. Both FES devices elicited similar rates of energy expenditure (1.04±0.18 kcal/min) and fuel homeostasis (83:17 %CHO:%FAT). However, the MyoCycle alone showed a statistically significant increase in energy expenditure at 20-30 min post-exercise (10.2%) increase vs pre-exercise, p=.04), with this increase in energy expenditure accompanied by a 48% increase in CHO oxidation during the first 30 min of exercise recovery.

Conclusion: Moderate stimulation intensity FES cycling qualifies as "low intensity" aerobic exercise according to authoritative guidelines, although increases in carbohydrate oxidation during and after cycling might have a meaningful impact on daily glucose regulation. Furthermore, the energetics of the recovery period seem to be influenced by the electrical control system, where the MyoCycle evokes greater use of fatty fuels during and after exercise.


Support: The Miami Project to Cure Paralysis, and MYOLYN, Inc.

BACKGROUND

- Functional Electrical Stimulation (FES) cycling elicits acute, steady-state increases in whole body energy expenditure¹ reported to be sufficient to be classified as "moderate intensity aerobic exercise"².
- We have reported that commercial FES cycling *estimate* implausibly devices low energy expenditure³, which might explain why might overlook practitioners the potential cardiometabolic health benefits of FES.^{4,5}
- FES cycling has a gross mechanical efficiency (GME) of $\sim 7-13\%^6$ compared to $\sim 30\%$ for volitional cycling. Mitigation of this inefficiency might be useful in enhancing benefits of FES exercise.
- A FES device in preproduction utilizes a novel electrical control theory that might optimize GME.
- **OBJECTIVE:** This study examined in eight subjects with SCI the energy cost, GME and fuel partitioning, during and following an acute bout of FES cycling when performed on 2 comparable devices.

<u>David W. McMillan^{1,2}, Doyle Freeman⁵, Matthew Bellman⁶, Kevin Jacobs², Mark S. Nash¹⁻⁴</u>

¹The Miami Project to Cure Paralysis, and Departments of ²Kinesiology and Sport Sciences, ³Neurological Surgery and ⁴Physical Medicine & Rehabilitation, University of Miami, Miller School of Medicine, Miami, FL; ⁵Department of Kinesiology, Florida Atlantic University, Boca Raton, FL; ⁶Myolyn LLC, Gainesville, FL

